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A CONTINUUM MODEL FOR VISCOELASTICITY,
DAMAGE, AND PERMANENT DEFORMATION
WITH APPLICATION TO

SWIRL-MAT POLYMERIC COMPOSITES

Kh. Abdel-Tawab and Y. Weitsman
Department of Mechanical and Aerospace Engineering and Engineering Science
The University of Tennessee, Knoxville, TN 37996
and
Division of Engineering Technology

Oak Ridge National Laboratory, Oak Ridge, TN 37831

ABSTRACT

A comprehensive thermodynamic framework is proposed for modeling the behavior of poly-
meric composites exhibiting viscoelasticity, damage and permanent deformation. In the
present formulation, the total strain is decomposed into viscoelastic and permanent com-
ponents. The effect of damage on the constitutive behavior is introduced through direct
coupling between damage and the internal state variables representing deformation of the
undamaged (virgin) material. This approach accounts for time-dependent damage as well
as damage-induced changes in material symmetry. The viscoelastic part of the proposed
constitutive model is first formulated for a general case of damage coupled with nonlinear
viscoelasticity, and subsequently specialized to coupling with linear viscoelasticity. Perma-
nent deformations are discussed in view of recent experimental findings. Finally, the proposed

constitutive model is applied to experimental data for swirl-mat polymeric composites.



1. INTRODUCTION

There is a growing interest in the use of polymeric composites for structural applications.
Some reasons for such growing interest are the significantly lighter weight of these materials
and the ease with which they can be manufactured. In all applications durability plays a
crucial role. For instance, since the expected life of an automotive vehicle is roughly fifteen
years, polymeric composites intended for use in automotive applications are required to
endure for the same length of time. It is well-known that polymeric composites containing
relatively small fractions of brittle fibers (roughly 30% by volume) creep viscoelastically (e.g.,
Jerina et al., 1979). In addition, experimental investigations (e.g., Suvorova, 1985; Schapery,
1989; Maire, 1992; Smith and Weitsman, 1996) indicate that polymeric composites undergo
both damage and permanent deformation. The above features of material behavior are all
life-limiting factors in that they can cause excessive dimensional distortions and stiffness
and residual strength degradations. The aim of this paper is to establish a framework for
modeling the foregoing features of material behavior. Such a framework is the basis for
performing durability analyses, which play a major role in engineering design.

Damage observed in polymeric composites may occur in the form of microcracks along
fiber bundles and also microdebondings along the fiber-matrix interface (e.g. Smith and
Weitsman, 1996). Up to the present time, modeling such microcrack damage processes has
been concerned primarily with brittle materials (e.g. rocks and concrete), exhibiting es-
sentially elastic behavior, and metals exhibiting plastic or creep behavior (e.g. Lemaitre,
1984; Chaboche, 1988; Krajcinovic, 1989; Ju, 1989; Hansen and Schreyer, 1994). A com-
mon feature in these works is that the effect of damage on material behavior is introduced
through the so-called effective stress. The notion of effective stress was first proposed for
one-dimensional creep problems by Kachanov (1958), who introduced the effective stress as
the applied stress magnified by a scalar factor representing the ratio between the original
(intact) load carrying area and the reduced area due to damage. However, it is well-known
that microcrack damage also affects the material symmetry. To account for this, the effective
stress was subsequently introduced through a tensorial mapping of the applied stress.

Despite the progress made in modeling microcrack damage processes, less attention has
been paid to modeling such processes in viscoelastic materials (e.g. plastics and polymeric
composites). Notably, Schapery (1981, 1994, 1996) established the basic formulation for

viscoelastic response that is accompanied by microstructural changes, such as profuse micro-
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cracking. These formulations account for viscoelasticity by means of a set of scalar valued
internal state variables similar to that employed in this article. The microstructural changes
are represented in Schapery’s work by means of another set of internal state variables whose
evolutionary laws are motivated by considerations of viscoelastic fracture mechanics. An ad-
ditional set of internal state variables is also employed by Schapery to account for permanent
(non-recoverable) deformation. It may also be mentioned that Weitsman (1988) attempted
to incorporate the effect of damage by coupling viscoelasticity and damage for a special class
of linear viscoelastic materials.

In this work, the formulation of coupled viscoelastic and damage response is patterned
on the methodology of continuum damage mechanics (e.g. Lemaitre and Chaboche, 1985;
‘Krajcinovic, 1989; Lemaitre, 1992). The formulation employs several of Schapery’s concepts
as well as the thermodynamics framework outlined by Lubliner (1972), but is cast within the
context of continuum damage mechanics. This format is correlated with damage induced
changes in material symmetry and results in expressions incorporating effective stresses.

An additional issue considered in this work is the permanent deformation that accompa-
nies the viscoelastic damage behavior of polymeric composites. In general, this permanent
deformation increases with the load as well as creep duration (e.g. Tuttle et al., 1995 ;
Smith and Weitsman, 1996). The physical origin for permanent deformation in polymeric
composites arises from several possible sources. For instance, the ability of the polymeric
matrix itself to undergo irreversible structural changes may lead to non-recoverable strains.
Permanent strains could also be due to frictional sliding following fiber-matrix interfacial
microdebondings, as well as internal surface roughness and other irregularities resisting mi-
crocrack closure upon unloading.

In Section 2 of this article, we present a general thermodynamics framework that ac-
counts for viscoelasticity, damage and permanent deformation. We proceed by modeling the
coupling between viscoelasticity and damage in Section 3. In Section 4 permanent defor-
mation is considered briefly but in a general manner. In Section 5, the model is applied to
a type of so-called swirl-mat polymeric composites. Section 6 concludes with some general
remarks pertinent to the present work and also contains some specific observations relevant

to the material considered in Section 5.



2. GENERAL THERMODYNAMICS FRAMEWORK

Consider a polymeric composite material and let 4, (r = 1,2,..., R) denote R scalar valued
internal state variables representing the internal degrees of freedom of molecular motion in
the polymeric matrix. Also, let ¢, (n = 1,2,...,N) denote N scalar valued internal state
variables associated with permanent deformation . The internal state variable representing
damage is taken in the form a symmetric fourth rank tensor w;;x which suffices to account
for general damage-induced changes in material symmetry. The formulation can be readily
modified to accommodate damage variables of other tensorial ranks. Throughout this paper
the subscripts r and ¢ are reserved for viscoelastic quantities; m and n for quantities associ-
ated with permanent deformation; and a, b, ¢, d, ¢, j, k,l,p and s are associated with tensorial
quantities and cover the range 1,2,3. Also, the summation convention is implied over the
range of repeated indices unless stated otherwise.

Viscoelasticity, damage and permanent deformation are all forms of irreversible thermo-
dynamic processes. For a closed system and small strain formulation, the entropy production

inequality can be written in the form (Coleman and Gurtin, 1967)
; . s 6Ty
—¢—€,'j0','j-s —q———'—ZO, (1)
T

where ¢ is the Gibb’s free energy (per unit volume), €;; — components of a suitably defined
volume average infinitesimal strain tensor, o;; — components of the Cauchy stress tensor,
S - entropy (per unit volume), T - temperature, ¢; — components of the heat flux vector,
T; = 0T /0z; - components of the temperature gradient, and z; — space coordinates. Also,
in (1) the overdot signifies differentiation with respect to time.

Consider a Gibb’s free energy of the form

¢ = ¢(Uija7r’<nawabcda T) .

The function ¢ is assmued to be continuous and sufficiently differentiable with respect to
its arguments. Considerations of the entropy production inequality in (1) give the familiar

relations

_ 09
Eij = — Foy; (2)

1Here we adopt the variables selected by Lubliner (1990), though some of those variables may in fact be
components of the second rank “back stress” tensor.




i 3)

S = —a_T ’
and
. : . g T,i
Fodr + 20 G+ Qijri wije — N >0, (4)

where I, Z, and ;1 are the thermodynamic forces conjugate to the internal state variables

Yry Cn and wjj, respectively, and are given by

__0¢
Fr — —677 9 (5)
_ %
Zn - ""éz-: ’ (6)
and 96
Qijkl = —awijkl . (7)

Guided by Lubliner (1972), we assume strain decomposition in the form
Eij = srj(akl’ YryWabed T) + 5%((71, Wabeds T) 3 (8)

where €}; and ef; are components of the viscoelastic and permanent strain tensors, respec-

tively. Since ¢ is a continuous function of o;;, then it follows from (2) that

86,']' 861;1
= ) 9
adkz Bai]- ( )
Substitution of (8) into (9) yields
Oel.  Oel
1) ki
—4 _ 2Tk 10
adkl 80',']' ( )

Equation(10) implies that there exists a scalar valued function, say ¢, such that

v 07 (11)

i —60’,‘]' )
We denote by ¢¥ the Gibb’s free energy associated with the viscoelastic deformation.

From (2), (8) and (11) it follows that ¢ can be written in the general form
¢=¢" — oy EZ' + F(Yry Cny Wabeas T') (12)

where F is an arbitrary scalar valued function of its arguments. The physical significance of
F becomes clear when we consider the Helmholtz free energy 3 using the relation (Callen,

1960)
¢(Uij’ Yrs Cn,wabcda T) = ¢(€fj7 Yrs Cnawabcd’ T) — 035 €5 - (13)

)



Following Lubliner (1972), we assume that ) can be decomposed in the form

Q)b = '()[)v(gl'lj,’\/rawabcda T) + d)p(Cnawabcd’T) ) (14)

where %Y and 1P are the Helmholtz free energies associated with the viscoelastic and per-

manent deformations, respectively. Substituting (12) and (14) into (13)
3" (035, Y Wabeds T) +F (Vrs Cns Wabed, T) = ¥V (€55, Ve Wabeds T) — 03 €55 + P ((ny Wabeas T) - (15)
The Legendre transform of ¢ (Callen, 1960) gives
Y (7;y Vrs Wabeds T) — 035 €55 = G035, Yrs Wabedr ') (16)

where G is a scalar valued function of its arguments. From (15) and (16), it is clear that

G = ¢¥ and F = ¢P; whereby F is independent of ,. Thus (16) yields

¢v(0'ij, VryWabcd, T) = ’va(e:j"yr’wabcd, T) — 0y 6:{7‘ ) (17)
and (12) reads
,¢=¢v—0’,‘j€g~+’l/)p. (18)
Since
a P P — P
"5;;(—0{1 e +¥P) =€,

equation (18) may be written as

¢ = ¢v(aij7 Yry Wabedy T) + ¢p(0ijv Cnawabcd7 T) ’ (19)
where ¢P is given by
¢p = ¢p — 0y 5% . (20)
and
0P
P _ _
€5 905, (21)
In view of (5) and (19), the thermodynamic forces I', are given by
0¢"
I, =- .
O (22)
Similarly, (6) and (19) yield
Z, = —6¢p (23)
n - acn ?
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Also, in view of (7) and (19) the thermodynamic forces £, can be decomposed in the form

Qijir = Wi + Wi » (24)
where .
= ai(ikz ) (25)
and
?jkl = “ai(f; : (26)

Finally, from the dissipation inequality (4), we have the following requirements

T4 20, (27)
oy + Qw2 0, (28)
2.6 20, (29)
and
Zn o+ Wy i > 0. (30)

Inequality (27) should always be satisfied whenever viscoelastic deformation occurs. When
viscoelastic deformation is accompanied by damage inequality (28) should be satisfied as well.
Similarly, inequalities (29) and (30) should be satisfied whenever permanent deformation
occurs and whenever such deformation is accompanied by damage, respectively.

This establishes the general thermodynamic framework. The decompositions (8) and
(19) result in forms where the coupling between viscoelasticity and damage, and between
permanent deformation and damage are split into two separate entities. This subject is

discussed in more details in the following two sections.

3. VISCOELASTICITY COUPLED WITH DAMAGE

For the sake of generality and to encompass a majority of practical applications, the vis-
coelastic constitutive equations will be first formulated for a general case of nonlinear vis-
coelasticity coupled with damage. The resulting equations will subsequently be reduced to

linear viscoelasticity coupled with damage.



3.1. General Formulation

The formulation will be first obtained for the case of fixed stress o;;, damage w;;x and
temperature T. The results will then be extended to fluctuating o;;, wiji and T'.

For fixed o;;, w;iji and T, an irreversible thermodynamic process is triggered in the
material, which prompts the viscoelastic internal state variables «, to drift spontaneously
toward their equilibrium values ¥¢ = 7£(0+j,Waped, I'). These equilibrium values are assumed
to be continuous and sufficiently differentiable functions of their arguments. Assuming that

7, and ~¢ are sufficiently small, a Taylor series expansion for ¢¥ about 7; takes the form
\'4 \ 4 1 v € €
¢ = ¢e + 5 ¢rq (7"‘ - 71‘) (7‘1 - 7q) + HOT ’ (31)

where
¢Z = ¢Z (Uij7 Wabed T)

is the value of ¢¥ at equilibrium, and

v 62¢v
rg 6%3% .

is a symmetric matrix assumed to be constant. In the above relations, the subscript “e”

implies that a quantity is calculated at v, = 4¢ Vr. Note that at equilibrium ¢¥ is minimum

(Callen, 1960), and hence
0¢Y
(0% )e =0

ra071674 > 0.

and

Consequently, there is no linear term in (31) and ¢y, is a positive definite matrix. In view
of (22), it is clear that neglecting the higher order terms (H.O.T.) in (31) corresponds to
assuming a linear relation between the thermodynamic forces I', and the internal state
variables «,. Such a linear relation is believed to be valid at least in the neighborhood of
equilibrium (Prigogine, 1967). In Appendix A, we also show that neglecting the H.O.T. in
(31) is equivalent to neglecting the same H.O.T. in the internal entropy production. It should
be mentioned that an expansion similar to that in (31) was previously used by Lubliner (1972)

in a strain formulation for viscoelasticity.




Employing the usual assumption of viscous-like resistance (Biot, 1954, 1955; Schapery,
1964, 1969), let
[, =arg9,, (32)
where, according to Onsager’s principle (Callen, 1960; Fung, 1965; deGroot and Mazur,
1984), a,q = @yq(0ij,Wabed, T) is @ symmetric matrix. Substituting (32) into inequality (27)

a'rq;)’r;}'q Z 0.

Hence, the matrix a,, is positive semi-definite.

By analogy with Biot (1954, 1955) and Schapery (1964, 1969), we assume that all a,,

have common dependence on 0;j, wiji and T'; namely
o
rg = a(0ij,Wabed, T) * a7y (33)

where a is a positive scalar valued function of its arguments, and a2, is a constant symmetric
3 Tq

and positive semi-definite matrix. Equations (22), (31) and (33) yield
Ay | g v
afq 7;? + ¢rq Yq = rq 7; ) (34)
where £ is a reduced time defined by d¢ = dt/a. Assuming that £ = 0 at ¢ = 0, then for
fixed o;jki, wijr and T one has € = t/a.
Since @, is a constant symmetric positive semi-definite matrix and @7, is a constant

symmetric positive definite matrix, equation (34) can be rewritten in a decoupled form

(Meirovitch, 1967) as
d»‘yr v - v o~ .
A T + &4, =0Y 47 (no sum over r), (35)

where 4, is a transformed set of internal state variables, each being a linear combination

of the original internal state variables 4,. The parameters 4; are the equilibrium values
corresponding to 4, and are obtained from +; by the same linear transformation as that for
4r. Also, A2 and @} are constants such that A2 > 0 and @] > 0.

For fixed stress, damage and temperature, the solution of equation (35) is
A = A4S (1 - e‘f/f’) (no sum over 1), (36)

where 7, are retardation times given by
AO
oy

T, (no sum over r). (37)



In terms of the transformed internal state variables, expansion (31) is rewritten as
1 2 se
" =¢i+5 2 ¥ (- —47)"+HOT. (38)

The viscoelastic strain can now be obtained by substituting (38) into (11) bearing in mind
that +,, and hence 4,, are to be kept fixed during the partial differentiation indicated in (11).
Employing (36) we then obtain

o 0¢. _¢/m\ A
€ij = " doy; + Zr: ( € ) doi;’ (39)
where
A, = %@: (35)? (no sum over r), (40)
and
=+ 3 A, (41)

¢, is the portion of the Gibb’s free energy associated with instantaneous deformation.

Recall that equation (39) was obtained for fixed stress, damage and temperature. For
fluctuating stress, damage and temperature the strain can be obtained by applying the
superposition principle to expression (39). Following Pipkin (1986), ¢ is identified as an
intrinsic material time scale for the viscoelastic processes. If 0;;, w;jr; and T can be expressed
in terms of the material time £ rather than physical time ¢, then JA,/80;; becomes a function
of £. Straightforward application of the superposition principle (Pipkin, 1986) yields

v ¢, _ 1 d [0A,
= Bau+/ D e (acn) “ (42)

where

t dt'
€= | e eaa @ T (43)

and for0 < 7 < ¢
dt’

¢ 2/0 aloj(t'), wabea(t'), T()]
Noting that dé = dt/a and d¢’ = dr/a the variable of integration in (42) can be reverted

(44)

form ¢’ to 7. Hence

o = 9% e (E=€0/: 0A,
& = 00,, + /_ Z ] Jo;; ar (45)
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Allowing for spatial variations of stress, damage and temperature, the total derivative d/dr

in (45) is replaced by a partial derivative, holding the spatial coordinates x; fixed, so that

&= - %, 4 / t_ > [1 — €€ ] 58; ( aA’) dr, (46)

60’,'3' ad,‘j

and from (43) and (44)
dt’

t
/ —
é 6 - /r a(aij’wabcdaT) .

The first term on the right-hand side of (46) represents the instantaneous part of the strain,

(47)

while the second term given by the integral represents the time-dependent portion. In
Appendix B, it is shown that with some further simplifying assumptions the second term
can be considered as a generalization of the well-known modified superposition integral (e.g.
Schapery, 1969). '

Using (22), (25), (31), (32) and the transformed internal state variables 4r,the dissipation
inequality (28) can now be expressed as

> Ai’?f - [ 9%, -y (&) ﬂf_} wiji 2 0. (48)

- Owijki Ae ) Owijni

The complete nonlinear formulation requires an expression for the evolution of the damage
tensor w;;k such that (48) is satisfied. Such expressions can be formally derived from ther-
modynamic considerations through the introduction of a damage potential (e.g. Lemaitre
and Chaboche, 1985; Lemaitre, 1992), but their usefulness seems to be restricted to elastic
response with damage. Alternatively, damage evolution relations may be associated with
a damage function akin to a yield function in plasticity (Hansen and Schreyer, 1994). An-
other approach, which is guided by insights from viscoelastic fracture mechanics, was given
by Schapery (1981, 1994, 1996). This approach suggests that an adequate accounting for
damage evolution is obtained by incorporating damage effects only within the instantaneous
portion of €;. This assumption resulted in good predictions for epoxy resin composites. In
practice, the evolution equations depend on the particular material considered, and several
such expressions can be found in the literature (e.g. Krajcinovic, 1989). A form of these

evolution equations will be considered in the following subsection.
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3.2. Linear Viscoelasticity Coupled with Damage

Under sufficiently small stress levels, the viscoelastic behavior of polymeric composites is
linear. In this section the foregoing general formulation is reduced to the case of a lin-
ear viscoelastic behavior coupled with damage. First, consideration is given to the general
case of anisotropy with respect to both the undamaged material behavior and the ensuing
damage response. Subsequently, attention is given to the simple case of isotropic material
behavior that remains isotropic even after development of damage. In both cases, attention
is restricted to a linear viscoelastic behavior where strain depends on current values of tem-
perature but not on temperature history. Most amorphous polymers exhibit such behavior
(Ferry, 1980). This latter restriction simplifies the formulation since it allows us to discard
coupling between damage and temperature history. The extension to the general case of
temperature-history dependent strain can be made following the same approach adopted

here.

3.2.1. Generally anisotropic behavior

Consider first the time-dependent part of ¢};. Since this part of strain is assumed to be
independent of temperature history, it follows that all 4%, and hence all 45 and A,, are

independent of temperature. Consequently
Ar = Ar(aij’wabcd) .

Expanding A, in terms of stress around a reference state (o;; = 0, T = Tg) up to quadratic
terms to retain linearity one obtains

1 %A,
A= 5 (W)o 0ij Okl (49)

where the subscript 0 implies that a quantity is calculated at the reference state. Note that
the constant term in (49) vanishes since 4¢ = 0, and hence 48 = A, = 0, at the reference
state. In addition, the linear term in (49) is discarded since it corresponds to a residual
strain at the reference state, which is disregarded in the present formulation.

A more specific functional form for A, can be obtained by realizing that the internal
molecular motions represented by 4, occur on a much smaller dimensional scale than that of

damage represented by w;jx. This suggests that all 77, and hence all 4¢ and A,, are likely to
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be affected by damage in a common manner; i.e. they have common dependence on w,pc.
Consequently, we can write

%A,
(m) = AS’JPS Ppskl V Tr. (50)
17

In (50), ASy;, is a symmetric fourth rank tensor (AS7, = ASL,; = ASTy = ASf,), and
Pijkt = Pijki(wabea) is a symmetric fourth rank tensor valued function of the damage variable
Wabeq SUuch that

at wapeg =0 — ikl = dijkl (51)

where

1
Liji = 3 (6ik 651 + bia 8jk)

is the unit fourth rank tensor and é;; is Kronecker delta.

In view of the above hypothesis, it is also reasonable to assume that the intrinsic vis-
coelastic material time scale ¢ is unaffected by damage. Moreover, for linear viscoelastic
behavior, the effect of stress on the material time scale is negligible (Ferry, 1980). Thus, the

scalar valued function a in (33) takes the form
a=at(T), (52)

and represents the usual time-temperature shift factor in thermorheologically simple mate-

rials (Morland and Lee, 1960).
Employing (49), (50) and (52), the viscoelastic strain-stress relation (46) can be written

as

=2k [ asule - ¢) G, (59)
where
ASiu(€) =3 AShy (147, (54)
is the time-dependent compliance tensor of the undamaged (virgin) material,
: / ¢ '
5=/05[—;’ﬁ ce= [szm (55)
and
3ij = Pijki okt - (56)

13



Equation (53) suggests that the viscoelastic strain €}; is affected by damage indirectly through
the stress &;;, which is the applied stress o;; mapped by the tensor P;x;. Following common
practice in continuum damage mechanics, we designate &;; as the effective stress.

Consider now the instantaneous part of €;. The equilibrium viscoelastic Gibb’s free
energy ¢! in (38) can also be expanded around the reference state in the form

y o 1 ( 9%
¢e = —Q;; 045 AT — 5 (m)o Oi5 Okl » (57)

where

o __ o( ) —_ 62¢Z
Q;; = @\ Wabed) = 9T dos, . )

is the thermal expansion tensor, AT = T — TR is temperature excursion from its reference
value TR, and the subscript 0 has the same meaning as before. Following common practice in
damage mechanics (e.g. Lemaitre and Chaboche 1985; Lemaitre, 1992), we further assume

that (0%¢Y/00;;00k1)o depends on damage in the separable form

a2¢v
2% ) =S5 Quut, 58
(&Lj BO’H o 1Jps QP ki ( )
where Qijri = Qijri(wabea) such that Qi = Lijri at wepea = 0, and S§jy is the undamaged

equilibrium compliance tensor. Using (41), the instantaneous strain takes the form

_ 94s
60;]'

= afj AT + [S:jps stkl - Z AS{,‘ps Ppskl] Okl , (59)

It is clear that, in general, the instantaneous part of strain can depend on damage in
a manner that differs from that of the time-dependent part. However, for simplicity let us

assume that both parts have the same dependence on damage so that
Qijkt = Piju - (60)

From (59), the instantaneous strain then becomes

0o .
ij
where
Sz?jps = Sfjkl - Z A zrjkl > (62)

is the instantaneous (elastic) compliance tensor of the undamaged material.

14




The total strain given by (53) can now be rewritten in the compact form
06
e, = ol AT + / Sigu(€ = &) tdr (63)

where
Siim(€) = S + ASiu(§) (64)

is the overall (instantaneous and time-dependent) compliance tensor of the undamaged ma-
terial. It is well-known (e.g. Fung, 1965) that both Sf,; and S5, are positive definite. From
(62) it can then be hypothesized that each AS7,, is positive semi-definite, and from (54) it
follows that AS;;1(£) is also positive semi-definite, as it should be.

In the remainder of this work we consider isothermal conditions, namely AT = 0. The

constitutive equation (63), then reads
30
z] —/ St]kl kIdT (65)
Also, the dissipation inequality (48) becomes
Z A2 7r + Sijps(t) B, pskl oijom 2 0. (66)

Since the first term on the left-hand side of (66) is always non-negative, a sufficient condition

to satisfy (66) is

Sijps(t) Pot  —  positive semi — definite, (67)
where
. OPpski
P, Kl — B2 Wabcd
Pe a“‘)a.bcu,’

Thus, the functional form of the mapping tensor P;;j is restricted by the two requirements

in (51) and (67). One such possible functional form (e.g. Ju, 1990) is
Pt = (Iiju — wije) ™, (68)

which is considered to be a generalization to the scalar form used by Kachanov (1958) in

one-dimensional problems. Clearly, (68) satisfies (51), and the choice of w;jz; should be such

that (67) is satisfied.
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3.2.2. Isotropic behavior

For an isotropic undamaged material behavior, the instantaneous compliance in (62) takes

the form (e.g. Fung, 1965)

1 1 3
RS 5 Jo Lijii + 9 (Bo 3 Jo) 6 Owr (69)

where J, and B, are the instantaneous shear and bulk compliances, respectively. Similarly,

the time-dependent compliance in (54) takes the form

1 1 3
ASiu(t) = 5 M) T + 3 [ABO) = 5 AI0)] 856u. (70)
where, analogously
AJ(t)=3 A (1—et7) (71)
and
AB(t)=3Y AB, (1-et™) | (72)
with AJ, and AB, positive constants. The overall compliance can now be expressed in the
form
1 1 3
Siml®) = 5. J(0) Lwa + 5 [BO) = 5I(0)] 85:6u, (73)
where
J(@t)=Jo+ AJ(Y),
and

B(t) = B, + AB(t),

are the shear and bulk compliances, respectively.

Consider the circumstance that the response of the damaged material remains isotropic.
In this case, damage must admit an isotropic representation that does not change the original
material symmetry properties. One possible way of representing isotropic damage is to
introduce two independent scalar variables ws and wy that characterize the influence of
damage on the deviatoric and hydrostatic strain components, respectively. The effective

stress &;; is then assumed in the form

/
aij 1 Okk

(1 —ws) +§(1 —wy) Bij » (74)

Oij =
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where
1

/
Oij = 0ij ~ 30k bij

is the deviatoric part of stress and oy is the trace of the stress tensor. Also, in (74) both ws
and wy are in general functions of a scalar w representing the microcrack density, referred
to as the microcrack concentration parameter (Kachanov,1986).

The mapping tensor P;;x can be evaluated from (56) and (74), to read

1 (wg —ws)
P!]kl = (1 _ UJS) Iz]kl + 3 (1 —CUS) (1 — WH) 51_7 6ch . (75)

Substitution of this result into (68) gives
1
wijit = ws Lij + 3 (wg — ws) 6ij bkt . (76)

Equation (76) takes the most general form of a fourth rank isotropic damage tensor wyj (Ju,
1990). Upon substitution of (73) and (74) into (65), the isothermal strain-stress relation of

an isotropic damaged viscoelastic response takes the form

e = [ [lJ(t—T)Q-( %; )+éB(t—r)—a—< Tk )5,,] dr. (1)

+ o- |2 or \1 —ws or \1 —wgy

The deviatoric and hydrostatic parts of the material behavior can be separated from (77)

into the following respective forms

v/?! __ t . _a_ O-:J
2ey/ = [ J(t-7)5 (1 _ws) dr (78)
and 5
v _ [ py_ 9 [om/3) o
el = /0 _B(t-7)5 (1 _wH) 8 dr (79)

where €;’ and ¢}, are the deviatoric and hydrostatic strain components, respectively. The
effects of wg and wy on material behavior may then be evaluated from uniaxial creep tests.

For instance, let o;; = o &;; 6;1, in which case €}, = €33, then (78) and (79) yield

v v [t 0 o
ev — €, _/0_ S (=) 5 (1—_—(;) dr | (80)
d
- t 1 0 o
e{1+25;2=/0_§B(t_r)a—T( _wH) dr. (81)
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Obviously, equations (80) and (81) predict a stress and time-dependent Poisson’s ratio,
v = v(o,t). In principle, these equations can be resolved from measurements of longitudinal
and transverse strains.

Isotropic damage thus can be represented by the two scalar functions ws and wy. These
functions are subjected to two restrictions. Firstly, recalling equations (51), (68) and (76),
they must vanish in the absence of damage. Secondly, they must satisfy the requirement in

(67). Using (73) for Si;x(t) and (75) for P;ju, the left-hand side of (67) becomes

: ws J(t) 1 Wy B(t)
Siips(t) Poski = 1-ws)? 2 (Iijkl - §5ij 51:1) + A—wn)? 9 ij bk - (82)

For the above expression to be positive semi-definite, it suffices that both wg and wy be
non-negative. This implies that damage can only increase or cease to increase but it cannot
decrease (i.e. no microcrack healing). This situation encompasses a majority of practical
applications involving damage.

To complete the isotropic formulation, evolution equations for ws and wy are needed.
Under creep loadings with increasing damage, such equations may be taken in the well-known

Kachanov-Rabotnov form (Kachanov, 1986)

[ (ef = af) 1
and )
e = M]X” (84)
H AH(l —wy) )

In equations (83) and (84), 05 and o are equivalent stresses for the deviatoric and hydro-
static damage modes, respectively, and o2 and o, considered to be material properties, are
the corresponding threshold stresses below which no damage develops. Also, xs, xu, 4s,
and Ay are material properties characteristic of creep damage, which are typically strongly
dependent on temperature. Finally, (-) denotes the McAuley bracket, i.e. (z) =z if £ >0

and (z) = 0 if £ < 0. Guided by Leckie and Hayhurst (1977), the equivalent stresses o5 and
H

0. may be taken in the following forms
3
0.;:9 = 'i Oi; a:j y (85)
and
Uf=ﬁ01+(1—,8)0'kk, (86)
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where oy is the maximum principal tensile stress and 3 (0 < § < 1) is a material property.

For monotonic creep loadings the stresses 0 and 0¥ serve as thresholds for the onset
of damage. For more complex loading histories involving, for instance, complete or partial
stress removals, the onset of damage is usually not related to a specific threshold stress. In
this case, the maximum strain achieved during the loading history may serve as a better
indication for the onset of new damage (Gurtin and Francis, 1981; Suvorova, 1985). For
instance, after a complete or a partial load removal damage evolution usually ceases. If
afterwards the previously achieved maximum strain is reached by increasing the applied
load or by creep under a lower load, then damage would start to evolve again.

Finally, it should be mentioned that a simpler representation, where isotropic response is
retained even after the onset of damage, can be obtained as a special case of (74) by setting
wy = ws = w. Consequently, damage is represented by the scalar w so that wijx = w Ijju

and the effective stress becomes

~ Oij
= , 87
JJ l—w ( )

This effective stress coincides with the original form proposed by Kachanov (1958). Under
creep loadings, the evolution equation for w can again be taken in the foregoing Kachanov-
Rabotnov form (Leckie and Hayhurst, 1977). Note that in contrast with the elastic case,
where scalar damage corresponds to a constant Poisson’s ratio (Ju, 1990), in the viscoelastic

case Poisson’s ratio remains both time and stress dependent.

4. PERMANENT DEFORMATION

The viscoelastic expressions derived in the foregoing section predict strains that recover
completely after load removal and cannot account for permanent deformations that may
persist indefinitely. As mentioned in Section 1, experimental evidence suggests that these
permanent strains increase with load during monotonic loading as well as with creep du-
ration. In other words, permanent strains in polymeric composites may depend on both
stress magnitude and history. The foregoing permanent deformation can be attributed to
several deformation mechanisms, which may require disparate modeling approaches. In the
remainder of this section we do not prescribe a specific analytical model for the permanent

deformation but provide a brief review of some of the possible modeling approaches. The
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thermodynamics framework formulated in Section 2 is sufficiently general to accommodate
any one or a combination of these modeling methods.
Since permanent strains in polymeric composites may depend, in general, on both stress

and stress history, f; in (8) should be further decomposed into a time-independent compo-

. t
nent €}; and a time-dependent component ¢};, namely
P _ _pPo pt
€, =&y + G (88)

In principle, these components can be modeled, respectively, following concepts in phe-
nomenological plasticity and viscoplasticity (e.g. Sun and Chen, 1989; Ha et al., 1991). For
instance, experimental investigations (Smith and Weitsman, 1996) reveal that under uniaxial
tensile creep loadings, the uniaxial time-dependent component P may be expressed in the

form

e = B(o — o™ t*, (89)

where ¢* is a threshold stress below which no permanent deformation takes place, ¢ is time,
and B, p and « are constants. It should be mentioned that an expression similar to that in
(89) was also employed by Tuttle et al. (1995) for the time-dependent permanent deformation
of a polymeric composite. Differentiating (89) with respect to time and eliminating ¢ in favor

of e and (0 — 0*) we obtain

o — 0" = ( 1 )u/x (spt)(u_l)/n (épt)u/n . (90)

”Bl/u

This stress-strain relation is in the well-known power-law form of viscoplasticity (Lubliner,
1990), thereby suggesting that e?* may be modeled by viscoplasicity theory. A similar ap-
proach can be taken to model £P° using time-independent plasticity instead of viscoplasticity.

An approach to model plastic deformation in viscoelastic solids has also been proposed by
Naghdi and Murch (1963). This modeling effort can predict the onset of plastic deformation
under general circumstances and implicitly accounts for the decomposition of P in (88).
It is important to realize that adopting phenomenological plasticity and viscoplasticity in
modeling the permanent deformation associates the internal state variables ¢, in Section
2 with internal stresses that represent isotropic and kinematic hardening. In this case,
coupling between permanent deformation and damage can be modeled following, for instance,

approaches by Ju (1989) and Hansen and Schreyer (1994).
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Physically based approaches to model permanent deformation in polymeric materials
have also been proposed (e.g. Lee et al., 1993; Hasan and Boyce, 1995). These two studies
in particular focus on semi-crystalline and glassy polymers, respectively, and hence could be
suitable for polymeric composites with thermoplastic matrices. Also, in these modeling ap-
proaches it is assumed that the permanent deformation is associated with the ability of the
polymeric matrix to undergo irreversible structural changes which, correspondingly, leads
to non-recoverable strains. In polymeric composites, however, permanent deformation can
also arise from other mechanisms such as frictional sliding following fiber-matrix interfacial
microdebondings. A mechanistic approach for modeling such phenomena exists for unidi-
rectional fibers embedded in an elastic matrix (Hutchinson and Jensen, 1990). No similar
models exist for a more complex fiber architecture (e.g. randomly oriented fibers) or more
complex matrix behavior (e.g. viscoelastic matrix).

Finally, permanent deformation can also arise following microcracking. This is attributed
to the formation of microcrack surface roughness and other irregularities, due to fiber ro-
tations and breakage, that resist microcrack closure upon unloading (e.g. Schapery, 1989;
Smith and Weitsman, 1996). In this case, the internal state variables (, in Section 2 can
be associated with the internal surface roughness and the internal degrees of freedom due to
fiber rotations. An approach similar to phenomenological plasticity can also be adopted to

model the permanent deformation that result due to microcrack damage (Dragon and Mréz,

1979).

5. APPLICATION TO SWIRL-MAT POLYMERIC COMPOSITES

In this section, the foregoing constitutive model will be utilized to predict the response of
a swirl-mat polymeric composite. The objective is to predict the creep-damage behavior of
the material and provide guidelines for its life-time assessment procedures.

The material considered consists of an E-glass fiber preform embedded in a urethane
matrix. A detailed description of the material along with its mechanical response is given by
Smith and Weitsman (1996). Here, we only observe that under sufficiently low stress levels
the material exhibits linear viscoelastic behavior, while under applied uniaxial tensile stresses

that exceed a threshold level of 0. ~ 36 MPa, damage in the form of profuse microcracks
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is observed. Also, the relative magnitudes of the permanent strains attained during creep

tests do not exceed 5% of the total strain. Consequently, from the practical point of view,

it is justified to neglect the permanent deformation for the present purposes; i.e. €;; = €};.
Experimental data for the material under consideration are available for uniaxial tensile

loadings. Assuming scalar damage, the uniaxial form of the model in (65) and (87) reads

¢ = tD(t—'r)i< id )dr, (91)

0~ dr \1 —w
where D(t) is the uniaxial compliance of the undamaged material. Similarly to (64), D(t)
can be decomposed into instantaneous D, = S§;; and time-dependent AD(t) = AS1111(t)

parts, namely

D(t) = D, + AD(t), (92)

where, in view of (54),

AD(t) = Z ASin (1 - e—t/Tr) . (93)

Upon replacing the sum of the discrete spectrum of retardation times by an integral of a

continuous spectrum, it can be shown (Pipkin, 1986) that AD(t) may be expressed as
AD(t) = D, t*, (94)

where D, and n(0 < n < 1) are constants, which can be readily determined from uniax-
ial creep tests under sufficiently low stress levels (i.e. without damage). For the material
at hand, Smith and Weitsman (1996) determined D, = 9.6 x 10~>MPa™', n = 0.08, and
D, = 2.8 x 1073MPa~!/hour®®®. A variability of about 20% is observed in the exper-
imentally determined values for D,. This variability is attributed to randomness in the
fiber architecture in the swirl-mat as well as to manufacturing induced inhomogeneity. The
abovementioned value for D, is therefore taken as the average of the experimentally recorded
values.
Similarly to (83) and (84), the evolution equation for w is taken in the form

where A and y are characteristic creep damage properties. It should be noted that in creep
tests, the stress is typically ramped over a short period of time up to the prescribed level.

During the ramp loading stage the behavior is essentially linear elastic until the stress exceeds
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the threshold value o, when damage starts to occur. Thus, for tests with o > o, creep occurs
under an initial value of damage w, that accumulates during the load ramping stage and
depends on the stress level o. For creep tests with o > o, solution of (95) using the initial

condition w = w, at t = 0 reads

1 1 t\~1/0+x)
= l1—-— 96
l-w 1-—w, ( tc> ’ (96)
where t. is a normalizing constant given by
- 1+x X
g = L=w) ( A ) . (97)
I+x o0 — 0

Denoting the value of w corresponding to a complete failure of the material by wy, then the

time to failure ¢; can be obtained from (96) in the form

t = {1 ~ (1 _w‘)Hx] te . (98)

1—w,

From (91) and (96) it follows that a theoretical value for w at complete failure is w. =1
and occurs at t = ¢.. In practice, however, materials typically fail at values of wy < 1 (e.g.
Lemaitre and Chaboche, 1985, p. 364) corresponding to t; < ¢..

To complete the uniaxial characterization of the material, values for w,, wy, x and A are
needed. If w, is known then creep-rupture tests can be performed at different stress levels to
experimentally determine #; as a function of stress, and subsequently determine the values
of wr, x and A.

Focusing attention on the instantaneous damage w, that occurs during the rapid ramp
loading to the stress level o, we note that in the case of elastic materials undergoing damage,
the ratio of the unloading compliance to the loading compliance provides a measure for the
level of damage. In particular, it is well-known (Kachanov, 1986) that

1 _ D

l-w, D,’ (99)

where DP is the unloading compliance. To determine w, “spike” tests, each consisting of
a constant stress rate loading-unloading cycle, were performed up to the stress levels o =
55, 69, and 83 MPa corresponding, respectively, to approximately 40, 50, and 60% of the
ultimate tensile strength. The rate of loading used was ¢ = 5.6 MPa/s, which is sufficiently
high to keep the viscoelastic effects at a minimal level. From these tests, values for D} were

determined. Values for D, were also determined to eliminate the effect of sample to sample
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Figure 1: Ratio between the uniaxial unloading and loading compliances as a function of
stress

variability in D,. Figure 1, which shows the results of these three tests, clearly suggests a
linear correlation between DY/D, and o. Since for 0 < 0. no damage occurs, then using
(99) it is possible to write

1_1% - <U_Cac>’

where C is a normalizing constant determined from Figure 1 as C = 510 MPa.

(100)

With the above expression for w, at hand, it is now possible to evaluate wg, A, and x
from time-to-failure data. Preliminary creep-rupture tests at temperature T' = 75°F and
50% relative humidity (Corum, 1995) are shown in Figure 2 . Clearly, these data exhibit
a large amount of scatter which, again, is attributable to inhomogeneity and randomness
of the swirl-mat polymeric composite material. Nevertheless, the data in Figure 2 can be
used to provide some life-time estimates for the material. The constants wg, A, and x were
determined by fitting the experimental data to the expression for ¢; in (98) using (100) for
w,. Based on the best fit curve, depicted in Figure 2 by the solid line, the following values

were determined

w =067, x=T71, A=260 MPa.hour/"", (101)

In view of the large scatter in the creep-rupture data, the above values should be considered
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Figure 2: Time to failure as a function of stress in uniaxial creep-rupture tests

as preliminary estimates rather than conclusive material properties.

In addition to the aforementioned inherent variability in properties of the swirl-mat
composite, a factor that significantly contributes to the scatter in creep-rupture data is
the high sensitivity of the behavior of the considered material to fluctuations in the ambient
environment (temperature and relative humidity). Creep-rupture tests typically require long
durations, where uncontrollable fluctuations in the environment accumulate and can affect
the results significantly. It is apparent that the large scatter in the limited experimental data
in Figure 2 undermines the reliability of predictions based upon the values listed in (101).
We therefore restrict attention only to times that are short in comparison with the time to
failure ¢, so that the effect of environmental fluctuations can be neglected.

Short term creep tests (approximately 170 hours) were performed under stress levels of
55, 69, and 83 MPa at temperature T' = 75°F and 50% relative humidity. The above stresses
were ramped at the same rate as that for the tests in Figure 1, so that the expression for
w, in (100) remains applicable. For creep under constant stress o, substitution of (92), (94)
and (96) into (91) yields

o o t d 7\~ /(+x)
=Dy ——r+ D) — t— "-—-—(1—-—) dr. 102
¢ (1-w) + (1 —wo) Jo- (t=7) dr ! (102)



Upon integrating by parts and changing the integration variable so that
n=rlt,
equation (102) becomes
€ =Dy +nD;t" _.__”_._) /01 (1= gy (1 - Zt' )_wﬂ) dn (103)

The solution of the integral in (103) can be obtained in a closed form (Gradsteyn and Ryzhik,
1965, Sec. 3.211, p. 287 and Sec. 9.182-10, p. 1055), so that
o o
t)=Dy——+ Dy t" ——
€)= Do a5 + D" 7=
where F(1,p,1 + n;t/t.) is a hypergeometric series that converges for all t < t. and is given
by

F(1,p,1 4 n;t/t.), (104)

4/ = 4 t plp+1) t\*
F(l’p’1+n’t/t°)*l+m (Z) HCESICEY)) (Z)

plp+1)(p +2) (t)3+”_,

+

(n+1)(n+2)(n+3) \t
and p is given by
1
=Ty

Experimental data along with model predictions are given in Figure 3. The experimental
data are depicted by the scattered symbols while model predictions are represented by the
solid lines. Note the good agreement between model predictions and experimental results.

Using (98), (100) and the values for the creep-rupture constants in (101), the times
to failure are estimated as t; ~ 1.07 x 107,1.72 x 10° and 1.14 x 10* hours for the stress
levels 55, 69, and 83 MPa, respectively. Obviously a creep duration of 170 hours represents
only a very small fraction of the life time, during which the damage w remains essentially
constant at its initial value w,, as can be verified from (96). This is in agreement with the
experimental observation (Smith and Weitsman, 1996) that after creep periods ranging from
0.5 to 170 hours the unloading compliance D¥ remains essentially unchanged, implying that
damage remains practically constant. Thus for short-time creep-damage behavior a good
approximation to the constitutive equation (91) with constant o is

1
€=
1—w,

D(t)o. (105)
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Figure 3: Comparison between model and experiment for short-term creep

Indeed, using (100), the difference between this approximation and exact calculation of the
integral in (91) is quite negligible for the creep durations shown in Figure 3.

For illustration purposes, model prediction for long-term creep behavior up to the failure
time t;, as obtained from (91), for ¢ = 83 MPa is shown in Figure 4. This figure demonstrates
that, similarly to metal, the material at hand exhibits a significant amount of tertiary creep
prior to failure. Features of such behavior were observed in creep-rupture tests, especially
at high temperatures (Corum, 1995). The fact that tertiary creep can be significant for the

material considered herein is also consistent with the relatively large value found for wy.

6. CONCLUDING REMARKS

In this article a thermodynamically consistent framework is proposed for modeling different
types of deformation of polymeric composites. The framework accommodates viscoelasticity,
damage in the form of distributed microcracks, and both time independent and dependent
permanent deformation. Several tensorial ranks for the damage variable can be used in the

context of the present formulation. In this article, however, damage is represented by a
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Figure 4: Model predictions for creep-damage behavior up to failure

general fourth rank tensor. Such a representation is capable of simulating general changes
in material symmetry properties due to microcracking-induced damage.

Upon establishing the thermodynamics framework, a comprehensive approach was pro-
posed for modeling the coupling between viscoelasticity and damage. The formulation was
first established for a nonlinear viscoelastic behavior coupled with damage. It is shown in
Appendix B that, in the absence of damage, the well-known modified superposition integral
is a special case of the present formulation. The formulation is subsequently reduced to
linear viscoelastic behavior coupled with damage. In this case, the effect of damage can be
incorporated into the constitutive equations in a form consistent with the well-known effec-
tive stress concept. For linear viscoelastic behavior coupled with damage, two special cases
of the generally anisotropic damage behavior were considered. In the first of these two cases
damage is represented by two scalar functions ws and wy and was referred to as isotropic
damage. In the second case damage was represented by a single scalar and was referred to
as scalar damage.

Using scalar damage, a uniaxial form of the model for linear viscoelasticity coupled with
damage was applied to a swirl-mat polymeric composite. When the deformation model

was complemented by a Kachanov-Rabotnov form of damage evolution, an experimentally

28




observed tertiary creep stage could be predicted by the current formulation. This affords
a convenient means for life-time assessment of structural components. It is noted that the
estimated strain to failure of about 2.3% (Figure 4) is consistent with experimental data.
This justifies the small strain formulation adopted in this work which, for the case of swirl-
mat polymeric composites, remains valid up to failure.

It is interesting to note that a special sub-case of the present formulation has certain simi-
larities with a somewhat reduced form of Schapery’s non-linear viscoelastic model (Schapery,
1969). To show this, consider the general strain-stress relation given by (46) and (47). Adopt-
ing the functional forms in (49), (50), (57) and (58), and allowing for Qijx1 # P;jui, then the
strain-stress relation (53) remains valid with the instantaneous strain given by (59). For
simplicity, consider isothermal conditions AT = 0. Restricting attention to scalar damage
and assuming that the material time scale ¢ is unaffected by damage, then similarly to (91)

the viscoelastic uniaxial strain-stress relation can be written as

t d

&' = foDoo+ [ AD(E—¢) (fao)dr, (106)

o-

where f, and f, are scalar functions of the damage variable w, and
‘o /t dt' o= /r dt’
“Jo ale(®)] ~Jo alo(t)]

If the tensor P is taken in the form given by (68), then f, = 1/(1 — w). However, since

Qijrt # Pijwr in (106), f, and f; can be disparate functions of w. Since the evolution equation

for w can be written in a general form as & = w(o,w), then w can in principle be expressed
as a function of . Consequently, f, and f, can be considered as compounded functions of

o and t.

Schapery’s model (1969), for isothermal conditions and applied uniaxial stress, reads
t d
e=gDoo+g [ ADE-€)(ar0)dr, (107)

where g, g1 and g, are scalar functions of stress (but not of time). Comparison between
(106) and (107) shows that the two forms are similar with the exception that in (106) the
counterpart of g; can be thought of as a constant lumped within f,. It is worth noting that
in the present formulation the physical origin of the scalar functions fo and f, stems from
damage. By contrast, in Schapery’s formulation the functions g,, g1 and g, arise from a formal

thermodynamic formulation. It should also be noted that unlike Schapery’s formulation, in
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the current work the Gibb’s free energy function is expanded about the equilibrium values
v¢ (equation 31), which leads directly to expression (50) for a damage modified compliance
familiar in the context of continuum damage mechanics.

While emphasis in this work was placed on the viscoelastic part of the deformation,
several deformation mechanisms and modeling approaches to the permanent deformation
were also discussed and can be readily accommodated within the proposed thermodynamics
framework. For simple loading cases, e.g. monotnoic and creep loadings, applied to the
swirl-mat polymeric composite considered in Section 5, experimental observations indicate
that permanent strains are significantly lower than their viscoelastic counterparts and, hence,
permanent deformation can justifiably be neglected. It should, however, be noted that under
cyclic loading conditions, and for a sufficiently large number of cycles, permanent deformation

may play an important role in the overall deformation.

APPENDIX A

In this appendix it is shown that neglecting the higher order terms (H.O.T.) in (31) is equiv-
alent to neglecting the same H.O.T. in the internal entropy production. To this end, and to
make the point in the simplest possible way, consider the circumstance where no permanent

deformation occurs. Thus ¢¥ = @, ¥¥ = ¢ and we have (e.g. Lubliner, 1972)
' =u—oije; — ST, (A.1)

where u is the internal energy per unit volume. To further simplify matters, consider the

case of fixed stress, damage and temperature, then at equilibrium
¢Z = Ue — T45 (E,’j)e - Se T 3 (A2)
where, again, the subscript “e” implies that a quantity is evaluated at 7, = ;. Subtracting
(A.2) from (A.1) one gets
¢v — ¢Z = U — Ue — (7,'1' [E;j - (5ij)e] - TAS ) (A3)
where
AS=S5-5.,

is the change in entropy from its equilibrium value, which can be decomposed (Prigogine,

1967) in the form
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AS = AS + A;S, (A.4)

where A.S and A;S are the changes (from equilibrium) in external entropy supply and
internal entropy production, respectively.

The first law of thermodynamics can be written in the form (Fung, 1965)
du = ;5 d(—:.'j + TdeS ’ (A5)

where d.S is an infinitesimal change in external entropy supply. Integrating the above dif-

ferential form from equilibrium to an arbitrary current state we get
U — U = 05 [€ij — (€ij)e) + T AeS . (A.6)
Substituting (A.6) into (A.4) and using (A.3) we obtain
& =4t —TAS. (A7)

For fixed stress, damage, and temperature; the internal entropy production takes the

form (Prigogine, 1967)
T, dv,

45 =1 (A.8)

Following Prigogine (1967), expand I', in terms of «, around the equilibrium values 75, not-

ing that I, = 0 at v, = 4¢ and keeping up to linear terms only, to get

ar, .
n:(a)(%—wﬂﬂom. (A.9)
Yo/ e

Substituting (A.9) into (A.8) and integrating from equilibrium to the current state yields
(Prigogine, 1967, pp. 47, 48)

1 [arT, . .
TAS = 3 (3 ) (¥ = 77) (9g — ;) + H.O.T. (A.10)
Yo/ e

Clearly, substitution of (A.10) into (A.7) and using (22) gives the expansion in (31), which

establishes the stated equivalence.

APPENDIX B

In this Appendix, we show that a special form of (46) can be viewed as a generalization of
the modified superposition integral. To this end, consider the special case in which all 7§,

and hence all 4¢ and A,, have common dependence on stress, damage and temperature, i.e.
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Ar(Uij,wabcd,T) = Cr /\(Uij,wabc&, T) vVr, (B-l)

where ¢, is a scaling constant and )\ is a scalar function of its arguments. Denoting the

time-dependent part of the strain in (46) by &§; and using (B.1), we can write

s = /Ot h(e —g')% ( o\ ) dr (B.2)

00','1'

where

hE) =3¢ (1-e¥m). (B.3)

p
Considering the isothermal undamaged material behavior and assuming that e is indepen-

dent of o0;;, then (B.2) becomes

es. = [ hit—m)2 (_@_) dr, (B.4)

i 0~ —6-—7_' aO','j
and ) becomes a function of the stress invariants only.

The meaning of the function A(t) can be established by considering the response under

sufficiently low stress levels. In this case the viscoelastic behavior is linear in stress, hence

2

A ~ 0% namely

—— )

A = ASijkI 0',']‘ Okl (B.5)

1
2

where B’Z 4 is a symmetric fourth rank tensor. Substitution of (B.5) into (B.4) gives

. 9
€5 = /0 | ASu(t—1) —%dr, (B.6)
where
ASiu(t) = h(t) ASy . (B.7)

Since, by hypothesis, the retardation times 7, are independent of stress, then Egijkl(t) is the
time-dependent compliance tensor. All components of this compliance tensor have common
time dependence expressed by A(t). It follows that h(t), which is analogous to AD(t) in
(94), is the linear uniaxial creep compliance of the material and can be determined from a
uniaxial creep test under sufficiently low stress levels.

With the above interpretation for h(#) and assuming that @ is independent of g;;, i.e.

a = a&(Wapca, T), it is clear that (B.2) can be considered as a multiaxial generalization of
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the modified superposition integral which also accounts for damage and thermal effects.
This interpretation for (B.2) is, however, restricted to materials characterized by common
time-dependence in all components of the creep compliance tensor in the linear range of
behavior. For isotropic behavior, this corresponds to the case of materials exhibiting a

constant Poisson’s ratio, which applies for many polymers (Ferry, 1980).
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